Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Mol Ecol Resour ; : e13961, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646932

RESUMO

Over the past few years, insects have been used as samplers of vertebrate diversity by assessing the ingested-derived DNA (iDNA), and dung beetles have been shown to be a good mammal sampler given their broad feeding preference, wide distribution and easy sampling. Here, we tested and optimized the use of iDNA from dung beetles to assess the mammal community by evaluating if some biological and methodological aspects affect the use of dung beetles as mammal species samplers. We collected 403 dung beetles from 60 pitfall traps. iDNA from each dung beetle was sequenced by metabarcoding using two mini-barcodes (12SrRNA and 16SrRNA). We assessed whether dung beetles with different traits related to feeding, nesting and body size differed in the number of mammal species found in their iDNA. We also tested differences among four killing solutions in preserving the iDNA and compared the effectiveness of each mini barcode to recover mammals. We identified a total of 50 mammal OTUs (operational taxonomic unit), including terrestrial and arboreal species from 10 different orders. We found that at least one mammal-matching sequence was obtained from 70% of the dung beetle specimens. The number of mammal OTUs obtained did not vary with dung beetle traits as well as between the killing solutions. The 16SrRNA mini-barcode recovered a higher number of mammal OTUs than 12SrRNA, although both sets were partly non-overlapping. Thus, the complete mammal diversity may not be achieved by using only one of them. This study refines the methodology for routine assessment of tropical mammal communities via dung beetle 'samplers' and its universal applicability independently of the species traits of local beetle communities.

2.
Cladistics ; 39(6): 548-570, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37647219

RESUMO

This study addresses the long-standing uncertainty about the internal classification of soldier beetles (Elateroidea: Cantharidae). Four datasets were compiled and analysed: 66 genes for 14 terminals, 15 mtDNA genes for 79 terminals, one mtDNA and two rRNA genes for 217 terminals, and barcodes for 576 terminals. Based on congruent topologies, Chauliognathinae is proposed as a sister to the remaining Cantharidae, followed by the redefined Malthininae (including Tytthonyxini), the paraphyletic "dysmorphocerine" lineages (Dysmorphocerinae sensu stricto and Heteromastiginae subfam. nov.), and Silinae + Cantharinae as a terminal clade. The present phylogeny supersedes earlier morphology and short-fragment molecular hypotheses that have not converged on a consensus. Few morphological characters corroborate the DNA-based relationships (see the adults and larval keys). However, morphology-based hypotheses have relied on a few informative characters, and no evidence strongly rejects the preferred molecular topology. The interpretation of morphological characters and uncertain polarity resulting from the high phenotypic disparity of Elateroidea are discussed in detail. The dated phylogeny hypothesizes the earliest split within the Cantharidae in the Berriasian stage (Early Cretaceous, ~141 Myr) and the diversification of most extant subfamilies and tribes already in the Late Cretaceous. The most diverse subfamily, Cantharinae, represents a delayed radiation that started during the Eocene climatic optimum, 55.5 Myr. The late origin of Cantharinae questions the classification of Cretaceous Cantharidae as members of Cantharinae. Instead, the results suggest their deeper rooting after separating from dysmorphocerine lineages and before the node between Cantharinae and Silinae.


Assuntos
Besouros , Animais , Filogenia , DNA Mitocondrial , Larva , Incerteza
3.
Mol Ecol ; 32(23): 6093-6109, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37221561

RESUMO

Understanding the relative contributions of ecological and evolutionary processes to the structuring of ecological communities is needed to improve our ability to predict how communities may respond to future changes in an increasingly human-modified world. Metabarcoding methods make it possible to gather population genetic data for all species within a community, unlocking a new axis of data to potentially unveil the origins and maintenance of biodiversity at local scales. Here, we present a new eco-evolutionary simulation model for investigating community assembly dynamics using metabarcoding data. The model makes joint predictions of species abundance, genetic variation, trait distributions and phylogenetic relationships under a wide range of parameter settings (e.g. high speciation/low dispersal or vice versa) and across a range of community states, from pristine and unmodified to heavily disturbed. We first demonstrate that parameters governing metacommunity and local community processes leave detectable signatures in simulated biodiversity data axes. Next, using a simulation-based machine learning approach we show that neutral and non-neutral models are distinguishable and that reasonable estimates of several model parameters within the local community can be obtained using only community-scale genetic data, while phylogenetic information is required to estimate those describing metacommunity dynamics. Finally, we apply the model to soil microarthropod metabarcoding data from the Troodos mountains of Cyprus, where we find that communities in widespread forest habitats are structured by neutral processes, while high-elevation and isolated habitats act as an abiotic filter generating non-neutral community structure. We implement our model within the ibiogen R package, a package dedicated to the investigation of island, and more generally community-scale, biodiversity using community-scale genetic data.


Assuntos
Ecossistema , Modelos Biológicos , Humanos , Filogenia , Evolução Biológica , Biodiversidade , Variação Genética/genética
4.
Mol Phylogenet Evol ; 184: 107759, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36921697

RESUMO

Hoverflies (Diptera: Syrphidae) are a diverse group of pollinators and a major research focus in ecology, but their phylogenetic relationships remain incompletely known. Using a genome skimming approach we generated mitochondrial genomes for 91 species, capturing a wide taxonomic diversity of the family. To reduce the required amount of input DNA and overall cost of the library construction, sequencing and assembly was conducted on mixtures of specimens, which raises the problem of chimera formation of mitogenomes. We present a novel chimera detection test based on gene tree incongruence, but identified only a single mitogenome of chimeric origin. Together with existing data for a final set of 127 taxa, phylogenetic analysis on nucleotide and amino acid sequences using Maximum Likelihood and Bayesian Inference revealed a basal split of Microdontinae from all other syrphids. The remainder consists of several deep clades assigned to the subfamily Eristalinae in the current classification, including a clade comprising the subfamily Syrphinae (plus Pipizinae). These findings call for a re-definition of subfamilies, but basal nodes had insufficient support to fully justify such action. Molecular-clock dating placed the origin of the Syrphidae crown group in the mid-Cretaceous while the Eristalinae-Syrphinae clade likely originated near the K/Pg boundary. Transformation of larval life history characters on the tree suggests that Syrphidae initially had sap feeding larvae, which diversified greatly in diet and habitat association during the Eocene and Oligocene, coinciding with the diversification of angiosperms and the evolution of various insect groups used as larval host, prey, or mimicry models. Mitogenomes proved to be a powerful phylogenetic marker for studies of Syrphidae at subfamily and tribe levels, allowing dense taxon sampling that provided insight into the great ecological diversity and rapid evolution of larval life history traits of the hoverflies.


Assuntos
Dípteros , Genoma Mitocondrial , Animais , Filogenia , Dípteros/genética , Teorema de Bayes , Larva
5.
Mol Ecol ; 32(23): 6110-6128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34775647

RESUMO

Disentangling the relative role of environmental filtering and spatial processes in driving metacommunity structure across mountainous regions remains challenging, as the way we quantify spatial connectivity in topographically and environmentally heterogeneous landscapes can influence our perception of which process predominates. More empirical data sets are required to account for taxon- and context-dependency, but relevant research in understudied areas is often compromised by the taxonomic impediment. Here we used haplotype-level community DNA metabarcoding, enabled by stringent filtering of amplicon sequence variants (ASVs), to characterize metacommunity structure of soil microarthropod assemblages across a mosaic of five forest habitats on the Troodos mountain range in Cyprus. We found similar ß diversity patterns at ASV and species (OTU, operational taxonomic unit) levels, which pointed to a primary role of habitat filtering resulting in the existence of largely distinct metacommunities linked to different forest types. Within-habitat turnover was correlated to topoclimatic heterogeneity, again emphasizing the role of environmental filtering. However, when integrating landscape matrix information for the highly fragmented Quercus alnifolia habitat, we also detected a major role of spatial isolation determined by patch connectivity, indicating that stochastic and niche-based processes synergistically govern community assembly. Alpha diversity patterns varied between ASV and OTU levels, with OTU richness decreasing with elevation and ASV richness following a longitudinal gradient, potentially reflecting a decline of genetic diversity eastwards due to historical pressures. Our study demonstrates the utility of haplotype-level community metabarcoding for characterizing metacommunity structure of complex assemblages and improving our understanding of biodiversity dynamics across mountainous landscapes worldwide.


Assuntos
Mariposas , Solo , Animais , Florestas , Ecossistema , Biodiversidade
6.
Mol Ecol Resour ; 23(1): 64-80, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35852519

RESUMO

Quantifying species trophic interaction strengths is crucial for understanding community dynamics and has significant implications for pest management and species conservation. DNA-based methods to identify species interactions have revolutionized these efforts, but a significant limitation is the poor ability to quantify the strength of trophic interactions, that is the biomass or number of prey consumed. We present an improved pipeline, called Lazaro, to map unassembled shotgun reads to a comprehensive arthropod mitogenome database and show that the number of prey reads detected is quantitatively predicted from the prey biomass consumed, even for indirect predation. Two feeding bioassays were performed: starved coccinellid larvae consuming different numbers of aphids (Prey Quantity bioassay), and starved coccinellid larvae consuming a chrysopid larvae that had consumed aphids (Direct and Indirect Predation bioassay). Prey taxonomic assignment against a mitochondrial genome database had high accuracy (99.8% positive predictive value) and the number of prey reads was directly related to the number of prey consumed and inversely related to the elapsed time since consumption with high significance (r2  = .932, p = 4.92E-6). Aphids were detected up to 6 h after direct predation plus 3 h after indirect predation (9 h in total) and detection was related to the predator-specific decay rates. Lazaro enabled quantitative predictions of prey consumption across multiple trophic levels with high taxonomic resolution while eliminating all false positives, except for a few confirmed contaminants, and may be valuable for characterizing prey consumed by field-sampled predators. Moreover, Lazaro is readily applicable for species diversity determination from any degraded environmental DNA.


Assuntos
Afídeos , Besouros , Animais , Cadeia Alimentar , Besouros/genética , Comportamento Predatório , Afídeos/genética , DNA/genética
7.
Mol Ecol ; 32(23): 6147-6160, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271787

RESUMO

To help address the underrepresentation of arthropods and Asian biodiversity from climate-change assessments, we carried out year-long, weekly sampling campaigns with Malaise traps at different elevations and latitudes in Gaoligongshan National Park in southwestern China. From these 623 samples, we barcoded 10,524 beetles and compared scenarios of climate-change-induced biodiversity loss, by designating seasonal, elevational, and latitudinal subsets of beetles as communities that plausibly could go extinct as a group, which we call "loss sets". The availability of a published mitochondrial-genome-based phylogeny of the Coleoptera allowed us to compare the loss of species diversity with and without accounting for phylogenetic relatedness. We hypothesised that phylogenetic relatedness would mitigate extinction, since the extinction of any loss set would result in the disappearance of all its species but only part of its evolutionary history, which is still extant in the remaining loss sets. We found different patterns of community clustering by season and latitude, depending on whether phylogenetic information was incorporated. However, accounting for phylogeny only slightly mitigated the amount of biodiversity loss under climate change scenarios, against our expectations: there is no phylogenetic "escape clause" for biodiversity conservation. We achieve the same results whether phylogenetic information was derived from the mitogenome phylogeny or from a de novo barcode-gene tree. We encourage interested researchers to use this data set to study lineage-specific community assembly patterns in conjunction with life-history traits and environmental covariates.


Assuntos
Artrópodes , Besouros , Animais , Filogenia , Biodiversidade , Insetos , Evolução Biológica , Besouros/genética
8.
Mol Ecol ; 32(23): 6161-6176, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36156326

RESUMO

Current understanding of ecological and evolutionary processes underlying island biodiversity is heavily shaped by empirical data from plants and birds, although arthropods comprise the overwhelming majority of known animal species, and as such can provide key insights into processes governing biodiversity. Novel high throughput sequencing (HTS) approaches are now emerging as powerful tools to overcome limitations in the availability of arthropod biodiversity data, and hence provide insights into these processes. Here, we explored how these tools might be most effectively exploited for comprehensive and comparable inventory and monitoring of insular arthropod biodiversity. We first reviewed the strengths, limitations and potential synergies among existing approaches of high throughput barcode sequencing. We considered how this could be complemented with deep learning approaches applied to image analysis to study arthropod biodiversity. We then explored how these approaches could be implemented within the framework of an island Genomic Observatories Network (iGON) for the advancement of fundamental and applied understanding of island biodiversity. To this end, we identified seven island biology themes at the interface of ecology, evolution and conservation biology, within which collective and harmonized efforts in HTS arthropod inventory could yield significant advances in island biodiversity research.


Assuntos
Artrópodes , Animais , Artrópodes/genética , Biodiversidade , Genômica , Plantas/genética , Código de Barras de DNA Taxonômico/métodos , Ilhas
9.
Mol Biol Evol ; 40(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36562771

RESUMO

Rare and geographically restricted species may be vulnerable to genetic effects from inbreeding depression in small populations or from genetic swamping through hybridization with common species, but a third possibility is that selective gene flow can restore fitness (genetic rescue). Climate-sensitive pikas (Ochotona spp.) of the Qinghai-Tibetan Plateau (QHTP) and its vicinity have been reduced to residual populations through the movement of climatic zones during the Pleistocene and recent anthropogenic disturbance, whereas the plateau pika (O. curzoniae) remains common. Population-level whole-genome sequencing (n = 142) of six closely related species in the subgenus Ochotona revealed several phases of ancient introgression, lineage replacement, and bidirectional introgression. The strength of gene flow was the greatest from the dominant O. curzoniae to ecologically distinct species in areas peripheral to the QHTP. Genetic analyses were consistent with environmental reconstructions of past population movements. Recurrent periods of introgression throughout the Pleistocene revealed an increase in genetic variation at first but subsequent loss of genetic variation in later phases. Enhanced dispersion of introgressed genomic regions apparently contributed to demographic recovery in three peripheral species that underwent range shifts following climate oscillations on the QHTP, although it failed to drive recovery of northeastern O. dauurica and geographically isolated O. sikimaria. Our findings highlight differences in timescale and environmental background to determine the consequence of hybridization and the unique role of the QHTP in conserving key evolutionary processes of sky island species.


Assuntos
Lagomorpha , Animais , Lagomorpha/genética , Evolução Biológica , Hibridização Genética , Genômica , Demografia
10.
Gigascience ; 112022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852418

RESUMO

Metazoan metabarcoding is emerging as an essential strategy for inventorying biodiversity, with diverse projects currently generating massive quantities of community-level data. The potential for integrating across such data sets offers new opportunities to better understand biodiversity and how it might respond to global change. However, large-scale syntheses may be compromised if metabarcoding workflows differ from each other. There are ongoing efforts to improve standardization for the reporting of inventory data. However, harmonization at the stage of generating metabarcode data has yet to be addressed. A modular framework for harmonized data generation offers a pathway to navigate the complex structure of terrestrial metazoan biodiversity. Here, through our collective expertise as practitioners, method developers, and researchers leading metabarcoding initiatives to inventory terrestrial biodiversity, we seek to initiate a harmonized framework for metabarcode data generation, with a terrestrial arthropod module. We develop an initial set of submodules covering the 5 main steps of metabarcode data generation: (i) sample acquisition; (ii) sample processing; (iii) DNA extraction; (iv) polymerase chain reaction amplification, library preparation, and sequencing; and (v) DNA sequence and metadata deposition, providing a backbone for a terrestrial arthropod module. To achieve this, we (i) identified key points for harmonization, (ii) reviewed the current state of the art, and (iii) distilled existing knowledge within submodules, thus promoting best practice by providing guidelines and recommendations to reduce the universe of methodological options. We advocate the adoption and further development of the terrestrial arthropod module. We further encourage the development of modules for other biodiversity fractions as an essential step toward large-scale biodiversity synthesis through harmonization.


Assuntos
Artrópodes , Animais , Artrópodes/genética , Biodiversidade , Código de Barras de DNA Taxonômico , Estudos Longitudinais
11.
Mol Ecol ; 31(18): 4866-4883, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35838255

RESUMO

Invasive species are among the most important, growing threats to food security and agricultural systems. The Mediterranean medfly, Ceratitis capitata, is one of the most damaging representatives of a group of rapidly expanding species in the family Tephritidae, due to their wide host range and high invasiveness potential. Here, we used restriction site-associated DNA sequencing (RADseq) to investigate the population genomic structure and phylogeographical history of medflies collected from six sampling sites, including Africa (South Africa), the Mediterranean (Spain, Greece), Latin America (Guatemala, Brazil) and Australia. A total of 1907 single nucleotide polymorphisms (SNPs) were used to identify two genetic clusters separating native and introduced ranges, consistent with previous findings. In the introduced range, all individuals were assigned to one genetic cluster except for those in Brazil, which showed introgression of an additional genetic cluster that also appeared in South Africa, and which could not be previously identified using microsatellite markers. Moreover, we assessed the microbial composition variations in medfly populations from selected sampling sites using amplicon sequencing of the 16S ribosomal RNA (V4 region). Microbiome composition and structure were highly similar across geographical regions and host plants, and only the Brazilian specimens showed increased diversity levels and a unique composition of its microbiome compared to other sampling sites. The unique SNP patterns and microbiome features in the Brazilian specimens could point to a direct migration route from Africa with subsequent adaptation of the microbiota to the specific conditions present in Brazil. These findings significantly improve our understanding of the evolutionary history of the global medfly invasions and their adaptation to newly colonized environments.


Assuntos
Ceratitis capitata , Microbiota , Animais , Ceratitis capitata/genética , Ceratitis capitata/microbiologia , Metagenômica , Microbiota/genética , Repetições de Microssatélites , África do Sul
12.
Mol Ecol ; 31(15): 4078-4094, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35665980

RESUMO

Most of our understanding of island diversity comes from the study of aboveground systems, while the patterns and processes of diversification and community assembly for belowground biotas remain poorly understood. Here, we take advantage of a relatively young and dynamic oceanic island to advance our understanding of ecoevolutionary processes driving community assembly within soil mesofauna. Using whole organism community DNA (wocDNA) metabarcoding and the recently developed metaMATE pipeline, we have generated spatially explicit and reliable haplotype-level DNA sequence data for soil mesofaunal assemblages sampled across the four main habitats within the island of Tenerife. Community ecological and metaphylogeographic analyses have been performed at multiple levels of genetic similarity, from haplotypes to species and supraspecific groupings. Broadly consistent patterns of local-scale species richness across different insular habitats have been found, whereas local insular richness is lower than in continental settings. Our results reveal an important role for niche conservatism as a driver of insular community assembly of soil mesofauna, with only limited evidence for habitat shifts promoting diversification. Furthermore, support is found for a fundamental role of habitat in the assembly of soil mesofauna, where habitat specialism is mainly due to colonization and the establishment of preadapted species. Hierarchical patterns of distance decay at the community level and metaphylogeographical analyses support a pattern of geographic structuring over limited spatial scales, from the level of haplotypes through to species and lineages, as expected for taxa with strong dispersal limitations. Our results demonstrate the potential for wocDNA metabarcoding to advance our understanding of biodiversity.


Assuntos
Código de Barras de DNA Taxonômico , Solo , Biodiversidade , DNA , Ecossistema , Haplótipos/genética
13.
MycoKeys ; 88: 1-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585929

RESUMO

Full taxonomic characterisation of fungal communities is necessary for establishing ecological associations and early detection of pathogens and invasive species. Complex communities of fungi are regularly characterised by metabarcoding using the Internal Transcribed Spacer (ITS) and the Large-Subunit (LSU) gene of the rRNA locus, but reliance on a single short sequence fragment limits the confidence of identification. Here we link metabarcoding from the ITS2 and LSU D1-D2 regions to characterise fungal communities associated with bark beetles (Scolytinae), the likely vectors of several tree pathogens. Both markers revealed similar patterns of overall species richness and response to key variables (beetle species, forest type), but identification against the respective reference databases using various taxonomic classifiers revealed poor resolution towards lower taxonomic levels, especially the species level. Thus, Operational Taxonomic Units (OTUs) could not be linked via taxonomic classifiers across ITS and LSU fragments. However, using phylogenetic trees (focused on the epidemiologically important Sordariomycetes) we placed OTUs obtained with either marker relative to reference sequences of the entire rRNA cistron that includes both loci and demonstrated the largely similar phylogenetic distribution of ITS and LSU-derived OTUs. Sensitivity analysis of congruence in both markers suggested the biologically most defensible threshold values for OTU delimitation in Sordariomycetes to be 98% for ITS2 and 99% for LSU D1-D2. Studies of fungal communities using the canonical ITS barcode require corroboration across additional loci. Phylogenetic analysis of OTU sequences aligned to the full rRNA cistron shows higher success rate and greater accuracy of species identification compared to probabilistic taxonomic classifiers.

14.
Ecol Evol ; 12(1): e8535, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127039

RESUMO

Diptera is often considered to be the richest insect group due to its great species diversity and broad ecological versatility. However, data on dipteran diversity from subtropical ecosystems have hitherto been scarce, due to the lack of studies conducted at an appropriate large scale. We investigated the diversity and composition of Diptera communities on Tianmu Mountain, Zhejiang, China, using DNA metabarcoding technology, and evaluated their dynamic responses to the effects of slope aspect, season, and altitudinal zone. A total of 5,092 operational taxonomic units (OTUs) were discovered and tentatively assigned to 72 dipteran families, including 2 family records new for China and 30 family records new for the locality. Cecidomyiidae, Sciaridae, and Phoridae were the predominant families, representing 53.6% of total OTUs, while 52 families include >95% unidentified and presumed undescribed species. We found that the community structure of Diptera was significantly affected by aspect, seasonality (month) and elevation, with richer diversity harbored in north-facing than south-facing slopes, and seasonality a more profound driver of community structure and diversity than elevation. Overall, massive species diversity of Diptera communities was discovered in this subtropical ecosystem of east China. The huge diversity of potentially undescribed species only revealed by metabarcoding now requires more detailed taxonomic study, as a step toward an evolutionary integration that accumulates information on species' geographic ranges, ecological traits, functional roles, and species interactions, and thus places the local communities in the context of the growing knowledge base of global biodiversity and its response to environmental change.

16.
Mol Ecol Resour ; 22(3): 847-861, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34496132

RESUMO

Metabarcoding of DNA extracted from community samples of whole organisms (whole organism community DNA, wocDNA) is increasingly being applied to terrestrial, marine and freshwater metazoan communities to provide rapid, accurate and high resolution data for novel molecular ecology research. The growth of this field has been accompanied by considerable development that builds on microbial metabarcoding methods to develop appropriate and efficient sampling and laboratory protocols for whole organism metazoan communities. However, considerably less attention has focused on ensuring bioinformatic methods are adapted and applied comprehensively in wocDNA metabarcoding. In this study we examined over 600 papers and identified 111 studies that performed COI metabarcoding of wocDNA. We then systematically reviewed the bioinformatic methods employed by these papers to identify the state-of-the-art. Our results show that the increasing use of wocDNA COI metabarcoding for metazoan diversity is characterised by a clear absence of bioinformatic harmonisation, and the temporal trends show little change in this situation. The reviewed literature showed (i) high heterogeneity across pipelines, tasks and tools used, (ii) limited or no adaptation of bioinformatic procedures to the nature of the COI fragment, and (iii) a worrying underreporting of tasks, software and parameters. Based upon these findings we propose a set of recommendations that we think the metabarcoding community should consider to ensure that bioinformatic methods are appropriate, comprehensive and comparable. We believe that adhering to these recommendations will improve the long-term integrative potential of wocDNA COI metabarcoding for biodiversity science.


Assuntos
Biologia Computacional , Código de Barras de DNA Taxonômico , Animais , Biodiversidade , DNA/genética , Código de Barras de DNA Taxonômico/métodos , Ecologia
17.
Front Microbiol ; 12: 633075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239504

RESUMO

The gut microbiome plays an important role in a host's development and adaption to its dietary niche. In this study, a group of bamboo-feeding insects are used to explore the potential role of the gut microbiota in the convergent adaptation to extreme diet specialization. Specifically, using a 16S rRNA marker and an Illumina sequencing platform, we profiled the microbial communities of 76 gut samples collected from nine bamboo-feeding insects, including both hemimetabolous (Orthoptera and Hemiptera) and holometabolous (Coleoptera and Lepidoptera) species, which are specialized in three distinct dietary niches: bamboo leaf, shoot, and sap. The gut microbiota of these insects were dominated by Proteobacteria, Firmicutes, and Bacteroidetes and were clustered into solid (leaf and shoot) and liquid (sap) dietary niches. The gut bacterial communities of insects feeding on solid diet overlapped significantly, even though these insects belong to phylogenetically distant lineages representing different orders. In addition, the presence of cellulolytic bacterial communities within the gut microbiota allows bamboo-feeding insects to adapt to a highly specialized, fiber-rich diet. Although both phylogeny and diet can impact the structure and composition of gut microbiomes, phylogeny is the primary driving force underlying the convergent adaptation to a highly specialized diet, especially when the related insect species harbor similar gut microbiomes and share the same dietary niche over evolutionary timescales. These combined findings lay the foundation for future research on how convergent feeding strategies impact the interplays between hosts and their gut microbiomes and how the gut microbiota may facilitate convergent evolution in phylogenetically distant species in adaptation to the shared diet.

18.
Sci Total Environ ; 789: 147982, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052488

RESUMO

Plant invasions often act as ecosystem 'simplifiers' to simplify diversity and community structure of soil biota. However, inconsistent relationships between plant invasion and soil fauna have been found and few studies have addressed how soil fauna communities change upon plant invasions across taxa and feeding guilds. Here, we investigated the effects of moso bamboo (Phyllostachys edulis) invasion in subtropical China on soil mesofauna communities using novel high-throughput sequencing (HTS). Specifically, we analyzed the spatio-temporal dynamics of fauna diversity and feeding guilds in the litter and soil layers for three stages of moso bamboo invasion, i.e., uninvaded (secondary broadleaved forest), moderately invaded (mixed bamboo forest) and completely invaded (P. edulis forest). Overall, we found that the completely invaded bamboo forest decreased species richness and diversity of total fauna, herbivores, and microbivores consistently across different soil layers, but less so detritivores and predators. Although we did not find any interaction effects of bamboo invasion and soil layers on soil fauna diversity indices, significant interaction effects were found on the community composition, for total fauna and their feeding guilds. Specifically, the detrimental effects of bamboo invasion on the trophic structure of soil fauna communities were more profound in the litter layer than in the soil layer, suggesting that a litter layer with more diverse taxa does not mean higher resistance to plant invasion in maintaining the soil food web structure. Taken together, our findings suggest that different responses within fauna feeding guilds to plant invasion were pervasive, and a deeper soil layer may better alleviate the negative effects of pant invasion on fauna community structure. These shifts in soil biodiversity may further degrade ecosystem functioning.


Assuntos
Ecossistema , Solo , China , Florestas , Microbiologia do Solo
19.
Mol Ecol Resour ; 21(6): 1772-1787, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33503286

RESUMO

Metabarcoding of Metazoa using mitochondrial genes may be confounded by both the accumulation of PCR and sequencing artefacts and the co-amplification of nuclear mitochondrial pseudogenes (NUMTs). The application of read abundance thresholds and denoising methods is efficient in reducing noise accompanying authentic mitochondrial amplicon sequence variants (ASVs). However, these procedures do not fully account for the complex nature of concomitant sequences and the highly variable DNA contribution of specimens in a metabarcoding sample. We propose, as a complement to denoising, the metabarcoding Multidimensional Abundance Threshold Evaluation (metaMATE) framework, a novel approach that allows comprehensive examination of multiple dimensions of abundance filtering and the evaluation of the prevalence of unwanted concomitant sequences in denoised metabarcoding datasets. metaMATE requires a denoised set of ASVs as input, and designates a subset of ASVs as being either authentic (mitochondrial DNA haplotypes) or nonauthentic ASVs (NUMTs and erroneous sequences) by comparison to external reference data and by analysing nucleotide substitution patterns. metaMATE (i) facilitates the application of read abundance filtering strategies, which are structured with regard to sequence library and phylogeny and applied for a range of increasing abundance threshold values, and (ii) evaluates their performance by quantifying the prevalence of nonauthentic ASVs and the collateral effects on the removal of authentic ASVs. The output from metaMATE facilitates decision-making about required filtering stringency and can be used to improve the reliability of intraspecific genetic information derived from metabarcode data. The framework is implemented in the metaMATE software (available at https://github.com/tjcreedy/metamate).


Assuntos
Artefatos , Código de Barras de DNA Taxonômico , DNA Mitocondrial , Pseudogenes , Animais , DNA Mitocondrial/genética , Filogenia , Reprodutibilidade dos Testes , Análise de Sequência de DNA
20.
Mol Ecol ; 30(5): 1120-1135, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432777

RESUMO

High-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site-based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled "Next Generation Biodiversity Monitoring" was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3-day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS-based strategy to collectively build an integrative framework for site-based biodiversity data generation.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Chipre , Genômica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...